

Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Can Wang, Sheng Zhou*, Kang Yu, Defang Chen, Bolang Li, Yan Feng, Chun Chen

College of Computer Science, Zhejiang University ZJU-Bangsun Joint Research Center School of Software Technology, Zhejiang University Zhejiang Provincial Key Laboratory of Service Robot

WWW 2022 Code: https://github.com/zhoushengisnoob/CKD

> Zhuomin Chen 2022.05.26

Introduction

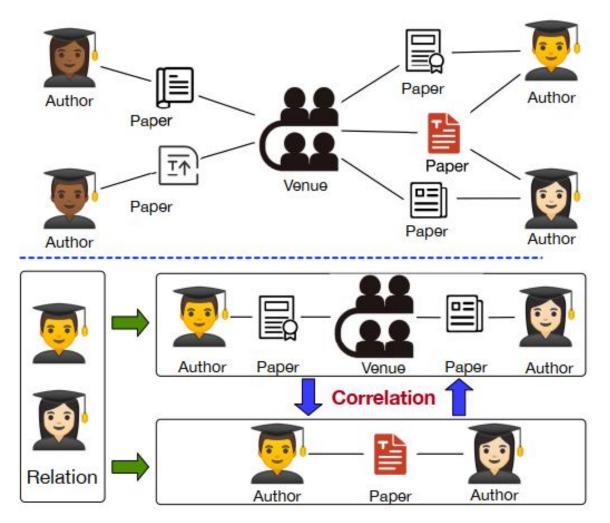
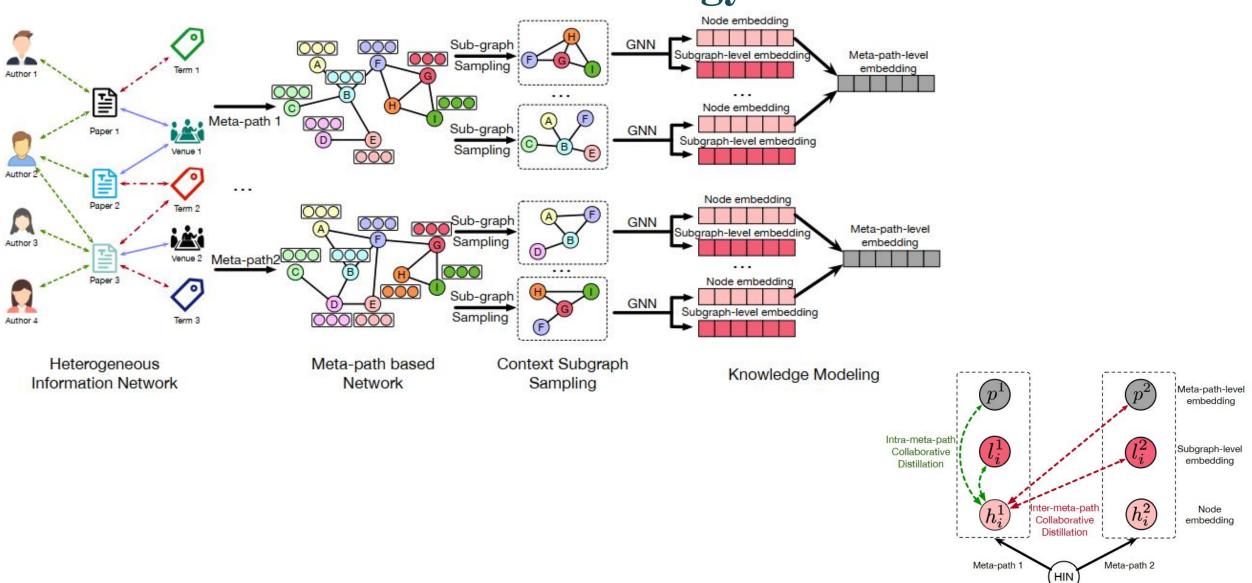
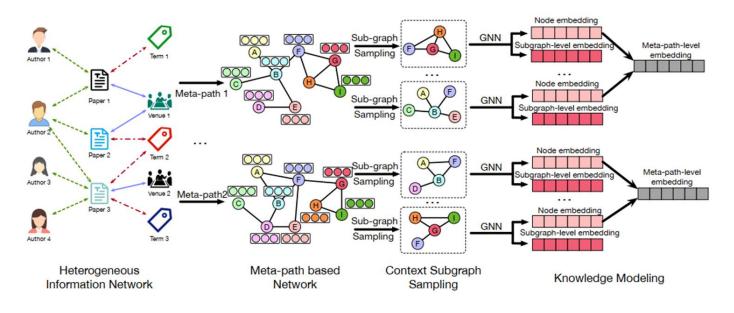



Figure 1: Heterogeneous information network and meta-path.



Methodology

Semantic Context Subgraph Sampling

Personalized PageRank (PPR)

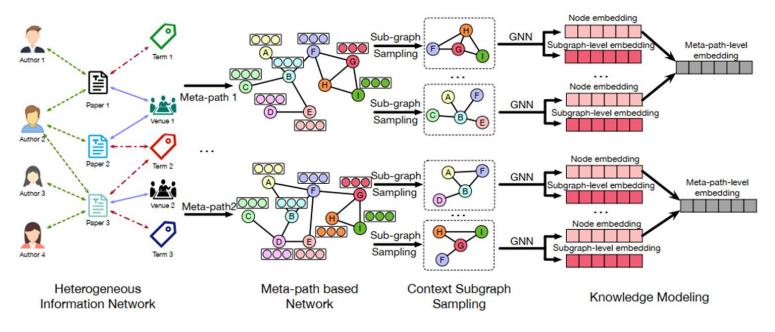
$$\mathbf{S}^m = \alpha \left(\mathbf{I}_n - (1 - \alpha) \mathbf{D}_m^{-1/2} \mathbf{A}^m \mathbf{D}_m^{-1/2} \right)^{-1}$$

(1)

 $S^m \in \mathbb{R}^{N \times N}$ is the diffusion matrix N is the number of target type nodes $A^m \in \mathbb{R}^{N \times N}$ is the adjacent matrix

HIN $G = \{V, \mathcal{E}, \mathcal{R}\}$ meta-path set \mathcal{M}

V is the set of typed nodes, E is the set of typed edges. R is the set of edge types

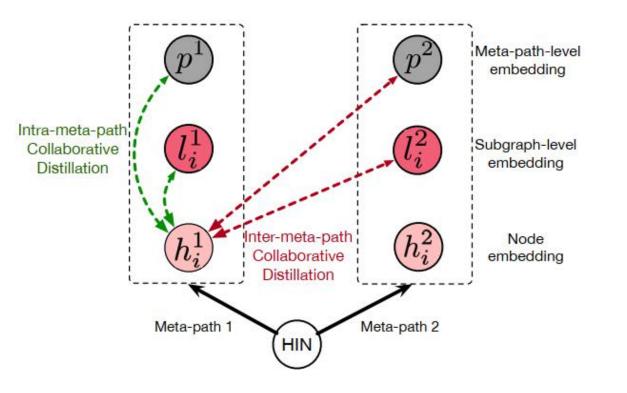

for each meta-path $m \in \mathcal{M}$, project the HIN into meta-path based homogeneous network G^m

sample the top-K important neighbors

$$G_i^m = \operatorname{top_rank}(\mathbf{S}^m(i, :), K)$$
(2)

Heterogeneous Knowledge Modeling

$$\mathbf{H}^{m} = \left(\widetilde{\mathbf{D}}_{m}^{-\frac{1}{2}}\widetilde{\mathbf{A}}^{m}\widetilde{\mathbf{D}}_{m}^{-\frac{1}{2}}\right)\mathbf{X}^{m}\mathbf{W}^{m}$$
$$l_{i}^{m} = \mathcal{R}_{l}\left(G_{i}^{m}\right) = \sigma\left(\frac{1}{K}\sum_{j=1}^{K}h_{j}^{m}\right)$$
$$p^{m} = \mathcal{R}_{g}\left(H^{m}\right) = \sigma\left(\frac{1}{N}\sum_{i=1}^{N}h_{i}^{m}\right)$$


$$(3) \quad \tilde{\mathbf{A}}^m = \mathbf{A}^m + \mathbf{I} \quad \mathbf{H}^m \in \mathcal{R}^{N \times d}$$

(4) local readout function $\mathcal{R}_l : \mathbb{R}^{(K) \times d} \to \mathbb{R}^d$

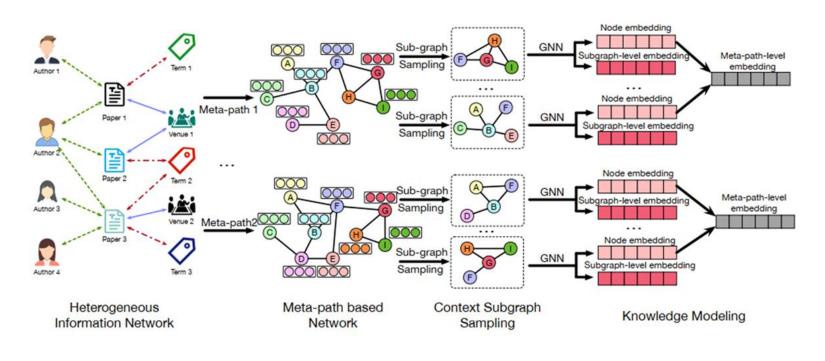
(5) global readout function $\mathcal{R}_g : \mathbb{R}^{N \times d} \to \mathbb{R}^d$

Collaborative Knowledge Distillation

Intra-meta-path Collaborative Distillation.

$$\mathcal{L}_{intra} = -\sum_{m \in \mathcal{M}} \left(\sum_{i}^{|N|} \left(\mathrm{MI}(h_i^m, l_i^m) + \mathrm{MI}(h_i^m, p^m) \right) \right)$$
(6)

Inter-meta-path Collaborative Distillation.


$$\mathcal{L}_{inter} = -\sum_{i}^{|N|} \left(\sum_{m \in \mathcal{M}} \sum_{n \in \mathcal{M}, n \neq m} \mathrm{MI}(h_i^m, l_i^n) + \mathrm{MI}(h_i^m, p^n) \right) \quad (7)$$

Mutual Information Estimation.

$$MI(X, Y) = \mathbb{E}_{\mathbb{P}}[-sp(-f(x, y))] - \mathbb{E}_{\mathbb{P} \times \widetilde{\mathbb{P}}}[sp(f(x, \widetilde{y}))]$$
(8)
$$sp(x) = log(1 + e^{x})$$

Model Training

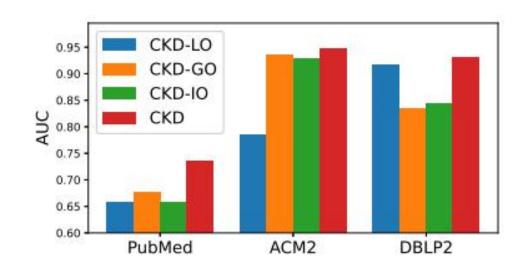
 $\mathcal{L} = \mathcal{L}_{intra} + \mathcal{L}_{inter}$

(9)

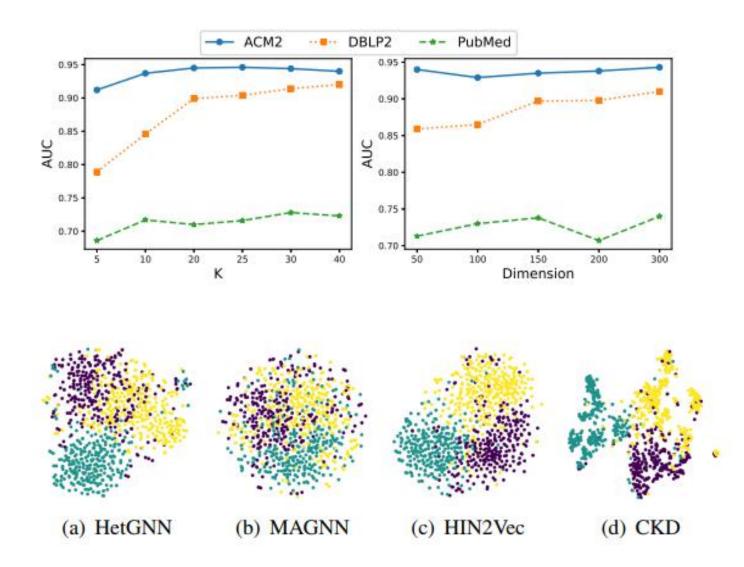
 $h_i = \sum_{m \in \mathcal{M}} h_i^m$ (10)

Experiments

Dataset	Nodes	Edges	Features	Labels	
ACM	10,942	547,872	100	3	
ACM2	29,930	61,770	100	7	
DBLP	26,128	239,566	200	4	
DBLP2	173,988	20,743,972	300	4	
Pubmed	63,109	125,167	200	8	
Freebase	79,843	498,508	300	7	



Dataset	AC	CM	DE	BLP	AC	CM2	Pub	Med	Free	base	DB	LP2
Metric	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
	89.6±0.0	89.6±0.0	91.3±0.0	91.7±0.0	64.8±0.0	75.9±0.0	15.1±0.0	16.8±0.0	48.9±0.0	60.6±0.0	88.4±0.0	88.3±0.0
DeepWalk	88.8±0.0	88.8±0.0	90.6±0.0	91.0 ± 0.0	64.8±0.0	75.9±0.0	14.7 ± 0.0	16.5 ± 0.0	48.1 ± 0.0	60.1±0.0	88.4±0.0	88.2±0.0
•	89.8±0.0	89.8±0.0	90.8±0.0	91.2±0.0	64.6±0.0	76.0±0.0	12.9±0.0	15.7±0.0	49.3±0.0	60.8±0.0	88.3±0.0	88.1±0.0
-	91.3±0.3	91.4±0.3	86.3±1.0	87.0±0.9	38.3±1.2	59.0±1.4	13.7±1.2	15.5±1.0	42.2±0.4	54.7±0.2	87.8±0.3	87.6±0.3
Metapath2Vec	91.7±0.6	91.8±0.6	87.7±1.0	88.3±0.9	38.9 ± 1.1	59.1±1.3	12.4±1.4	14.5±1.2	41.5 ± 1.0	54.6±0.3	88.0±0.2	87.8±0.3
	92.0±0.5	92.1±0.5	89.2±0.5	89.4±0.8	38.8 ± 1.1	59.3±1.5	13.2 ± 1.1	15.2 ± 1.1	41.6±0.3	54.9 ± 0.3	87.9±0.2	87.8±0.1
8	88.5±1.2	88.4±1.3	92.2±0.2	92.5±0.3	23.4±0.6	53.9 ± 0.3	14.8 ± 0.7	18.4±0.5	26.4±0.7	49.3±0.9	86.9±0.4	86.7±0.5
HIN2Vec	89.6±1.8	89.8±1.7	91.9±0.2	92.4±0.2	23.7 ± 0.5	54.9±0.6	14.2 ± 0.5	17.8±0.3	25.9±0.4	49.5±0.7	86.6±0.4	86.8±0.3
	89.8±1.6	89.7±1.8	92.5±0.3	93.0±0.2	26.8 ± 0.7	57.4±0.5	14.5 ± 0.8	17.6±0.6	26.0 ± 0.5	49.5 ± 0.8	87.5±0.2	87.3±0.3
	90.4±1.2	90.5±1.2	88.0±0.5	88.5±0.5	59.2±0.9	74.5±0.6	35.1±0.5	37.5±0.3	46.5±0.5	60.1±0.6	88.1±0.6	88.1±0.6
HAN	90.7±1.4	90.8±1.3	87.6±0.7	88.1±0.4	58.7 ± 1.1	74.0±0.8	34.3 ± 0.7	37.1±0.5	46.6 ± 1.1	60.9 ± 0.6	87.5±1.3	87.4±1.4
	90.5±1.0	90.5±1.0	88.4±0.8	88.9±0.8	59.1±0.8	74.5±0.6	35.0±0.8	38.5 ± 0.6	46.7±0.8	60.9 ± 0.4	88.2±0.7	88.2±0.7
	68.8±2.4	68.9 ± 2.1	74.4±1.0	75.9±1.0	31.5±1.2	57.1±1.2	14.9±0.8	20.3±0.6	-	()	86.8±0.8	87.0±0.8
HDGI	68.8±2.2	68.4±2.1	74.5 ± 1.2	75.9 ± 1.1	31.7 ± 1.3	57.2±1.2	15.2 ± 0.7	20.5 ± 0.5	-	-	87.0±0.9	87.2 ± 0.8
	69.8±2.7	69.5±2.8	74.5 ± 1.3	76.0 ± 1.4	31.8 ± 1.4	57.4±1.2	15.4 ± 0.6	20.7 ± 0.4		3. 	87.1±0.9	87.2±0.8
	89.1±0.4	89.3±0.3	50.8 ± 1.0	50.7±1.2	60.9±1.0	75.4±1.2	19.0±0.5	19.9±0.8	₩.	23 - 51	84.1±0.6	84.3±0.6
HGT	89.1±0.5	89.3±0.4	50.9±1.2	51.0±1.1	61.1±1.1	75.7±1.3	20.6±1.9	22.0±1.3	5.	8 2	84.2±0.6	84.4±0.7
	89.2±0.7	89.3±0.7	52.7±0.7	52.8±0.6	61.3±1.2	75.8±1.3	19.4 ± 2.5	20.7 ± 3.7		-	84.3±0.9	89.2±0.9
	90.3±0.3	90.4±0.2	93.9±0.1	94.1±0.2	62.4±0.6	75.9±0.2	17.1 ± 0.7	22.3±0.9	2	-	-	-
NSHE	90.5±0.2	90.6±0.2	93.8±0.3	94.0±0.3	62.4±0.7	75.9±0.2	17.5 ± 0.8	22.7±0.6	-	-	-	-
	89.7±0.3	89.8±0.3	93.9±0.2	94.1±0.2	62.5±0.8	76.1±0.2	17.7 ± 0.8	22.9 ± 1.1	-	-	-	-
MAGNN	85.7±0.2	85.7±0.2	87.9±0.3	88.3±0.4	51.0 ± 0.8	70.8±0.4	34.1±1.2	38.3±0.9	47.1±0.6	60.1±0.3	3 - 9	-
	87.3±0.4	87.3±0.4	87.5±0.5	88.3±0.2	52.1 ± 0.7	67.8±1.1	36.3±0.6	38.9 ± 0.7	47.6±0.3	60.0±0.5	(-)	-
	87.9±0.4	88.0±0.4	88.2±0.8	88.9±0.5	53.8 ± 0.6	70.8±0.7	39.4±0.7	42.1±0.8	47.4 ± 0.7	60.4 ± 0.4	275	-
HeCo	71.0±0.2	71.2±0.1	91.5±0.5	91.8±0.6	57.2±0.8	72.9.0±0.5	16.5 ± 0.5	26.1±1.2	=	5. .	8 55	-
	71.2±0.4	71.3±0.3	91.2 ± 0.5	91.4±0.6	56.7±0.9	73.0±0.3	16.8 ± 0.6	25.7 ± 1.1		-	-	-
	71.3±0.1	71.3 ± 0.1	91.2 ± 0.4	91.5±0.5	57.5±1.1	72.9 ± 0.7	16.9 ± 0.7	25.9±1.0	7.	87 7 0	070	7
	85.7±0.1	85.6±0.1	92.0±0.6	92.3±0.7	3 7 3	-	35.55	-	5	8. 5 3	150	-
HetGNN	86.1±0.1	86.1±0.1	92.3±0.5	92.6±0.5	-		-	-	-	-	-	-
	86.6±0.2	86.7±0.2	92.8±0.6	93.1±0.5	-		-	2	12	-	-	-
	91.9 ±0.4	91.9±0.4	92.5±0.2	92.8±0.2	69.7±0.5	79.7±0.8	36.8±1.1	39.3±1.6	48.2±0.7	60.5±0.4	90.2±0.3	90.1±0.3
CKD	92.9±0.3	92.9±0.3	92.5±0.4	92.8±0.4	65.6±0.3	77.9±0.1	37.4±0.9	40.1±0.6	49.6±0.4	61.1±0.7	90.4±0.3	90.3±0.3
	92.8±0.8	92.7±1.0	92.3±0.4	92.6±0.4	70.4±0.5	80.2±0.6	37.8 ± 1.2	40.4±1.2	48.1 ± 0.8	60.4 ± 0.5	90.2±0.2	90.1±0.1


Experiments

Method \ Data	ACM2	DBLP2	PubMed		
DeepWalk	0.818	0.789	0.663		
Metapath2Vec	0.712	0.915	0.628		
HIN2Vec	0.736	0.803	0.649		
HAN	0.868	0.711	0.717		
HDGI	0.537	0.691	0.594		
HGT	0.920	0.868	0.736		
NSHE	0.939	-	0.654		
MAGNN	0.696	-	0.514		
HeCo	0.681	3. 	0.519		
CKD	0.948	0.931	0.735		

Experiments

